Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles

نویسندگان

  • M Berezin
  • R Shavit
چکیده

Different ways exist in optics to realize photons carrying non-zero orbital angular momentum. Such photons with rotating wave fronts are called twisted photons. In microwaves, twisted fields can be produced based on small ferrite particles with magnetic-dipolar-mode (MDM) oscillations. Recent studies showed strong localization of the electric and magnetic energies of microwave fields by MDM ferrite disks. For electromagnetic waves irradiating MDM disks, these small ferrite samples appear as singular subwavelength regions with time and space symmetry breakings. The fields scattered by a MDM disk are characterized by topologically distinctive power-flow vortices and helicity structures. In this paper we analyze twisted states of microwave fields scattered by MDM ferrite disks. We show that in the fields scattered by MDM particles, one can clearly distinguish structures of rotating topological-phase dislocations. Specific long-distance topological properties of the fields are exhibited clearly in the effects of path-dependent interference with two coupled MDM particles. Such double-twisted scattering is characterized by topologically originated split-resonance states. Our studies of topological-phase effects and path-dependent interference in microwave structures with MDM ferrite particles are based on numerical analysis and recently developed analytical models. We present preliminary experimental results aimed at supporting basic statements of our studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulating microwaves with magnetic-dipolar-mode vortices

There has been a surge of interest in the subwavelength confinement of electromagnetic fields. It is well known that, in optics, subwavelength confinement can be obtained from surface plasmon (quasielectrostatic) oscillations. In this article, we propose to realize subwavelength confinement in microwaves by using dipolarmode (quasimagnetostatic) magnon oscillations in ferrite particles. Our stu...

متن کامل

Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: Magnetic-dipolar-mode vortex polaritons

A coupled state of an electromagnetic field with an electric or magnetic dipole-carrying excitation is well known as a polariton. Such a state is the result of the mixing of a photon with the excitation of a material. The most discussed types of polaritons are phonon polaritons, exciton polaritons, and surface-plasmon polaritons. Recently, it was shown that, in microwaves, strong magnon-photon ...

متن کامل

Magnetostatic-Magnon Sensors for Microwave Microscopy of Biological Structures

The detection of biological structures in microwave frequencies and understanding of the molecular mechanisms of microwave effects is considered as a problem of a great importance. Nowadays, however, most microwave techniques for biosensing are based on resonance structures, which can be used for measuring dielectric and conductivity properties of materials. In optics, special electrostatic-pla...

متن کامل

Unidirectional magnetoelectric-field multiresonant tunneling

Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropicdielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks ...

متن کامل

Microwave magnetoelectric fields and their role in the matter-field interaction.

We show that in a source-free subwavelength region of microwave fields, there can exist field structures with a local coupling between the time-varying electric and magnetic fields differing from the electric-magnetic coupling in regular-propagating free-space electromagnetic waves. To distinguish such field structures from regular electromagnetic (EM) field structures, we term them as magnetoe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012